

Detector Triggers and Burst Populations

David Band (GLAST SSC—GSFC/UMBC)

WHAT IS BURST DETECTOR SENSITIVITY?

- A detector's sensitivity is the threshold intensity at which a burst could have been detected.
- Rate trigger—the standard trigger looks for statistically significant increases in the detector's count rate
 - The counts are binned over an energy range □E and an accumulation time □t.
 - The background is estimated from the counts accumulated over a longer period beforehand. The fluctuation scale □ is the square root of the expected background in □t & □E.
 - A statistically significant increase is a predetermined number of □.

Complications:

- May require a trigger in multiple detectors; for flat detectors with different orientations this introduces a variable threshold
- After a rate trigger, may require that imaging finds a point source

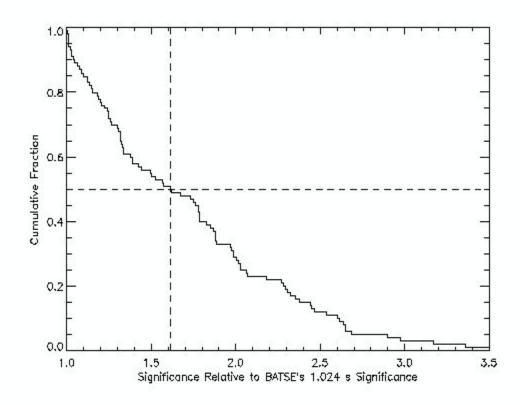
HOW IS SENSITIVITY MEASURED?

- The most accurate sensitivity measure is the intensity the trigger measures, i.e., the peak count rate averaged over [E & [t. But counts=instrumental, photons=physical. Because of imperfect efficiency and energy resolution, a spectrum is needed to translate this into a peak photon flux. Why translate to [E, not some other energy range?
- Note that peak photon flux may not be the most interesting intensity measure physically.
- Because bursts are not constant for seconds, and burst lightcurves differ at different energies, peak fluxes over □E₁
 & □t₁ and □E₂ & □t₂ cannot be compared directly.
- A numerically better (=smaller) sensitivity over a different ☐E & ☐t does not mean that fainter bursts can be detected.
- The number of bursts and their type depends on the detector and its trigger.

HOW MANY BURSTS ARE THERE?

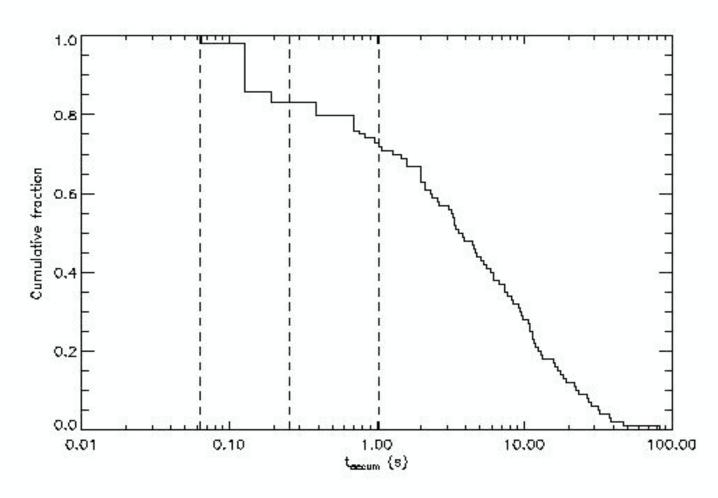
- Since the entire burst population has not been sampled, the answer depends on □E & □t.
- BATSE provided the best determination of the burst rate.
 - Initial report of 800 bursts/yr/sky underestimated the observing efficiency
 - Current number is 666 bursts/sky/yr above BATSE's threshold
 - BUT, this threshold was not sharp. BATSE was ~82% complete above □=0.3 ph/cm²/s.
- Correcting for completeness, etc., the burst rate is 550 bursts/yr/sky for □t=1.024 s and □E=50-300 keV above □=0.3 ph/cm²/s.
 - BATSE actually had □t=0.064, 0.256, and 1.024 s.
 - Usually □E=50-300 keV, but other energy bands tried.
- But what does this mean in terms of hard bursts? Soft bursts? Long bursts? How can we estimate the burst rate of a detector with different energy sensitivity (e.g., Swift)?

DEPENDENCE ON []t


- Usually trigger sensitivity 1/ □t
- But peak fluxes are usually smaller on longer timescales
- Therefore, increasing

 It does not mean that bursts a factor of

 It can be detected
- Could there be populations of very long or very short bursts that are not detected?
- Studies of untriggered BATSE bursts did not find many very long bursts.


SENSITIVITY FOR ANY It

The average increase in sensitivity relative to □t=1 s is only a factor of 1.6!

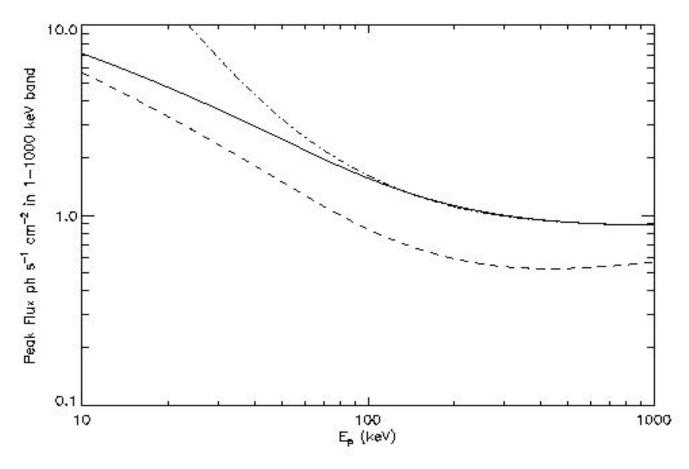
□t OF MAXIMUM SENSITIVITY

There were not a large number of bursts where the greatest sensitivity was for small $\Box t$.

ENERGY DEPENDENCE

- How do we compare detectors with different efficiencies and trigger [E?
- Use a fiducial peak photon flux F—i.e., always use the same energy band.
 - A spectral shape must be assumed
 - I propose 1-1000 keV to cover hard and soft spectra
- Study sensitivity as a function of the spectrum's hardness.
 Burst spectra can be approximated as

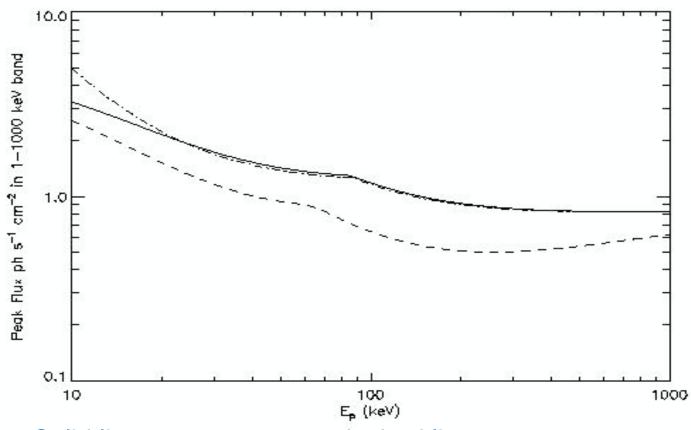
N E□exp[-E/E₀] at low energy N E□ at high energy


The peak of E^2N $\square f_{\square}$ occurs at $E_p = (2 + \square)E_0$. E_p is a measure of spectral hardness.

DETECTOR SENSITIVITY & BURST POPULATIONS

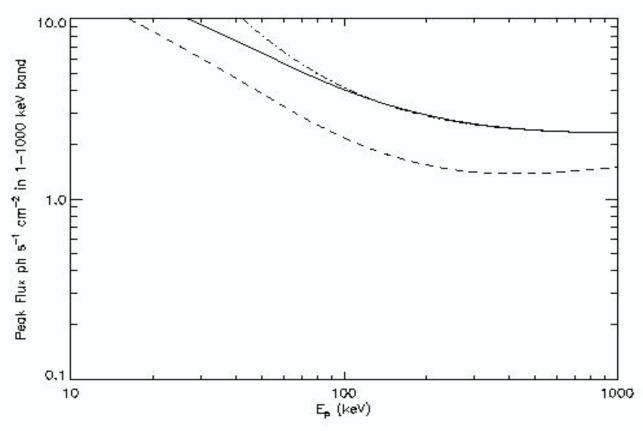
- Bursts will populate the E_p -F plane, while the detector sensitivity is a curve through the E_p -F plane.
- There remains a residual dependence on the high and low spectral indices,
 ☐ and
 ☐.
- Because of varying background and (in some cases) the requirement that ≥2 detectors trigger, detector sensitivity will vary with time and over the FOV. I use the maximum sensitivity (minimum F).
- E_p and F are for the peak of the lightcurve. Unfortunately, rarely are spectral fits presented for this peak. Thus we do not have the data to populate the E_p -F plane with bursts. But hardness ratio-intensity plots indicate general trends.

BATSE—THE REFERENCE MISSION



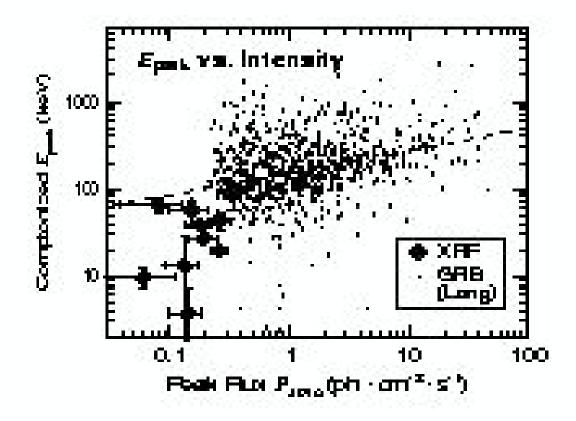
Solid line— \square = -1, \square = -2; dashed line— \square = -0.5, \square = -2;

dot-dashed line— $\square = -1$, $\square = -3$.



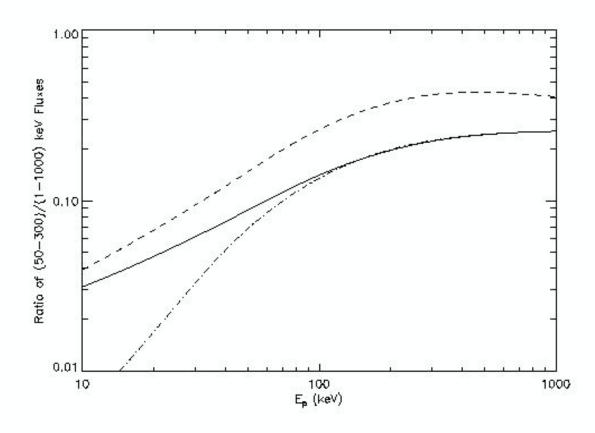
SWIFT—INCREASED LOW E SENSITIVITY

Solid line— \square = -1, \square = -2; dashed line— \square = -0.5, \square = -2; dot-dashed line— \square = -1, \square = -3.


GBM-NaI—SMALL DETECTOR

Solid line— \square = -1, \square = -2; dashed line— \square = -0.5, \square = -2; dot-dashed line— \square = -1, \square = -3.

BURSTS IN THE E_p-F PLANE


Kippen *et al.*, 2002, Woods Hole GRB Workshop. Note that F and E_p are reversed.

GLAST

SUMMARY

- A variety of accumulation times []t will increase a detector's sensitivity, but not by large factors.
- Detector comparisons should be done in the E_p -F plane.
- BATSE found that the burst rate is 550 bursts/yr/sky for □t=1.024 s and □E=50-300 keV above □=0.3 ph/cm²/s. This translates into a rate for a region of the E_p-F plane.
- Swift and BATSE will have comparable sensitivities above $E_p=100$ keV, while Swift will be much more sensitive at low energies.
- As expected, the GBM Nal detectors will be significantly less sensitive than BATSE.
- The LAT will be interested in high F, high E_p bursts.

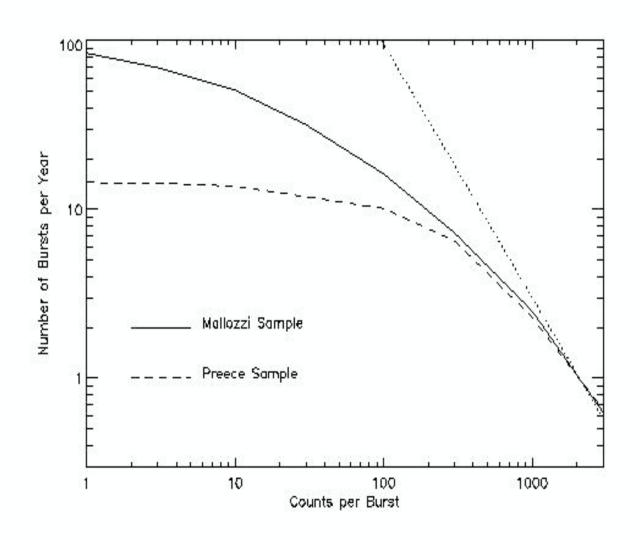
FLUX RATIO FOR DIFFERENT ENERGY BANDS

Solid line— \square = -1, \square = -2; dashed line— \square = -0.5, \square = -2; dot-dashed line— \square = -1, \square = -3.

Expected GBM Detection Rate

- Assume triggering on 50--300 keV band in □t=1s time bins.
 A 4.5□ increase in the 2nd brightest detector is equivalent
 to ~6.5□ in the LAT FOV. This results in a threshold peak
 flux of □_n=0.814 ph s⁻¹ cm⁻².
- Based on the BATSE-observed burst rate N_{sky}=(0.814/0.3)^{-0.8}

 ☐550=~250 bursts/sky/year
- - Within 55° FOV ~80 bursts/year
 - Within 72.5° FOV ~130 bursts/year
 - Within ~1/2 sky, ~185 bursts/year.



Empirical LAT Detection Rate

- Extrapolate BATSE spectra to LAT energy band:
 - 1) The Preece et al. (2000) catalog of ~5500 time resolved spectral fits from 156 high flux, high fluence bursts
 - − 2) The spectral fits to ~1400 bursts by Mallozzi et al.
- The number of bursts is normalized by BATSE rate. The high energy spectral index is forced to be <-1.8. Spectral extrapolations are folded with the LAT effective area for different inclination angles, and the results are integrated over inclination angle.
- Limitations: too few strong bursts, incompleteness at faint end, lack of spectral resolution.

Empirical Prediction

